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Abstract
Spin-dependent transport through the interface between a ferromagnet and a spin spiral is
investigated using both ballistic and diffusive models. We find that spin-dependent interferences
lead to a new type of diffraction called ‘spin diffraction’. It is shown that this spin diffraction
leads to local spin and electrical current along the interface, as well as spin transfer torque
acting on the spin spiral. This study also emphasizes that in highly inhomogeneous magnetic
configurations, diffracted electrons must be taken into account to properly describe the spin
transport.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In the last decade, considerable progress has been achieved in
the investigation of magnetization control by a spin-polarized
current [1]. Many experimental and theoretical efforts have
focused on metallic magnetic multilayered nanostructures
(SV) [2–4], magnetic tunnel junctions (MTJ) [5–7] and
recently antiferromagnets [8]. It seems that, although
important issues remain under investigation, most of the
microscopic and macroscopic features of spin transfer
torque within the macrospin approximation have now been
understood [9] and spin torque is now seriously considered for
applications [10].

The development of micromagnetic simulations [11]
and the recent observation of current-induced domain wall
motion [12] have underlined the question of spin transport in
inhomogeneous systems.

The interaction between spin transport and inhomoge-
neous magnetization has been studied at the interface between
a normal metal (N) and a ferromagnet (F), assuming smoothly
varying magnetization at the N/F interface [13, 14]. It
was found that, due to the inhomogeneous magnetization at

the interface, the interfacial spin accumulation can possess
components transverse to the local interfacial magnetization,
leading to the so-called ‘self-torque’ effect [13, 14]. In
other words, the interfacial magnetic inhomogeneities lead to
an interfacial torque for a single magnetic layer sandwiched
between non-magnetic electrodes.

The other topic that has attracted considerable attention
is the phenomenon of current-induced domain wall motion
(DWM). In such inhomogeneous systems, the Slonczewski
torque [1] (adiabatic spin transfer torque) still exists but
is not sufficient to interpret the experimental data [15, 16].
Besides the usual adiabatic spin transfer torque [1], another
torque (usually called non-adiabatic torque) has been proposed
by Berger [17] that arises from the non-adiabaticity of the
magnetic system. Many studies have then investigated the
nature of this torque. For example, Tatara et al [18] proposed
a momentum-transfer torque, arising from the fast spin texture
of the domain wall. Independently, Thiaville et al [19] and
Barnes et al [20] proposed a modified Landau–Lifshitz–Gilbert
equation taking into account the non-adiabatic torque. Zhang
and Li [21] also showed that in the case of a slowly varying
magnetic film, the spin relaxation of conduction electrons
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could lead to this non-adiabatic torque. Microscopic studies
on the properties of this torque have been carried out either
within a simple classical model [22], solving the Schrödinger
equation [23–25], using Boltzmann formalism [26, 27] or
Keldysh theory [28]. The non-adiabatic torque derived within
these works proves its non-local origin. Nguyen et al [29]
have shown that such non-adiabatic torque may be dramatically
enhanced in dilute magnetic semiconductors, due to strong
spin–orbit interaction. Recently, Tatara et al [30] proposed a
microscopic derivation taking into account both non-locality
and spin relaxation.

Finally, note that other mechanisms have been proposed
to interpret experimental results without the need of non-
adiabatic torque, such as thermal activation [31] or the use of
Landau–Lifshitz damping instead of Gilbert damping [32].

The effective torque acting on a spatially varying
magnetization can be written as [19–21, 25]:

T = a
∂M

∂ t
+ bM × ∂M

∂ t
− c1M × [M × (je ·∇)M]

− c2M × (je · ∇)M. (1)

The first two terms are, respectively, the renormalization factor
of the gyromagnetic ratio and damping parameter, while the
two following terms are proportional to the current density je

and stand for spin transfer torque in spatially varying magnetic
structures. The first term is called adiabatic torque while the
second one is the non-adiabatic torque. For smooth enough
inhomogeneities of the magnetic structure, the adiabatic
approximation is usually assumed: the electron spin follows
the local magnetization producing a small torque proportional
to the spatial derivative of the magnetization [23, 26] (third
term of equation (1)). In this case, it is usually accepted that
the non-adiabatic term is small (c2/c1 ≈ 0.01) but cannot be
neglected in domain wall experiments [16, 19, 24]. Note that
c1 and c2 are non-local coefficients [23–26, 28] which means
that, at each point of the structure, one needs to consider the
contribution of all electrons.

However, most of these studies addressed inhomogeneous
systems in the adiabatic limit and the question of highly
non-adiabatic systems is generally omitted: in such systems,
the non-adiabatic torque should be of the same order as the
adiabatic torque or even higher.

In this paper, we study the crossover between the adiabatic
and non-adiabatic regimes in an ‘academic’ system using
two different descriptions of the spin transport: ballistic
and diffusive. The system under investigation consists of
two adjacent layers—one with homogeneous magnetization
(F) and the other with a spin spiral (SS). This system is
actually justified by the recent observation of inhomogeneous
magnetic states in CoFe-based metallic spin valves [33]. The
authors observed that under the influence of the spin-polarized
current, magnetic vortices with radius 5 nm appear. Our
model uses a simplified picture of such systems in which a
ferromagnetic layer has an inhomogeneous magnetization. It,
however, allows us to predict new effects which take place
in such systems and in particular a new phenomenon of spin
diffraction.

In our system, spin-polarized electrons moving from F
into SS are diffracted by the spin spiral and the diffraction

pattern is spin-dependent. As a result, one can expect the
current perpendicular to the F/SS interface to produce a non-
zero torque acting on the magnetization of SS as well as a local
spin current and even charge current (Hall effect and spin Hall
effect [34]) along the F/SS interface.

This system is completely different from the one studied
in self-torque investigations [13, 14]. As a matter of fact,
self-torque arises from lateral spin diffusion due to magnetic
inhomogeneities at the N/F interface (no spin-diffraction effect
is considered), whereas our system gives rise to specific spin-
dependent patterns. It is also different from the previous
study of Xiao et al [23] on spin spirals since in our case the
adiabatic approximation is no longer valid. Indeed, in our
model the electrons moving through the interface keep the
memory of their spin state over a finite length. This case has
not been studied yet and strong differences from the adiabatic
approximation can be expected. Moreover, contrary to most of
the theoretical studies on domain wall motion, the electrical
current is not injected along the domain wall direction, but
transversely, yielding a spin-diffraction effect.

Note, finally, that such helicoidal spin structures exist in
some compounds such as MnSi [35], oxide materials such
as SrFeO3, NaCuO [36] or rare-earth-based compounds [37].
This helicoidal structure can also be a simplified picture of
narrow stripe domains with domain wall width comparable to
domain width. The model system we study here is thus a first
step towards domain wall motion and will serve as a reference
for forthcoming studies on this topic.

This paper is organized as follows. In section 2, we
present the quantum and diffusive models of spin transport at
the F/SS interface. The results are described in section 3 and
a discussion on experimental aspects is proposed in section 4.
The conclusion is given in section 5.

2. Model and formalism

The structure under investigation is depicted in figure 1 and
consists of two regions: the left one (z < 0) is a ferromagnet F,
with a magnetization P = Pz and the right one (z > 0) is a spin
spiral SS with a helicoidal magnetization M = M(sin(θ0 +
Qx)x+cos(θ0+Qx)z) expanding in the (x, z) plane. Here, the
interface is parallel to the (x, y) plane and z is perpendicular
to it. We consider that the region F (respectively SS) is
semi-infinite and connected to a ferromagnetic (respectively,
spin spiral) reservoir. The bias voltage V is applied in the z
direction across the interface.

2.1. Formulation of spin transport

To model the spin-dependent transport in such a system, we
use two different approaches: ballistic and diffusive. This
method gives information about the mechanisms that are
model-dependent and those that are system-dependent. These
formalisms are described in [4].

In the ballistic model, we use the Keldysh out-of-
equilibrium technique [4, 38] that expresses the Keldysh Green
functions G−+

σσ ′(rr′) as a function of the basis of wavefunctions
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Figure 1. Cartoon of the bilayer structure. The left semi-infinite
layer is a ferromagnet with a homogeneous magnetization and the
right semi-infinite layer is a spin spiral with wavelength 2π/Q.

�l(r)σ (r) for an electron with initial spin projection σ moving
from the left (right) to the right (left):

G−+
σσ ′(rr′) = fl(μl)�lσ ′(r′)�∗

lσ (r) + fr(μr)�rσ ′(r′)�∗
rσ (r)

(2)
where fl(r) are the Fermi distribution functions in the left and
right electrodes and μl(r) are the chemical potentials in these
electrodes so that V = (μl−μr)/e. In this formalism, the spin-
dependent conductivities and the spin density can be expressed
as a function of the Keldysh Green functions, G−+

σσ ′(rr′) (see
equations (6)–(9)).

In the diffusive approach, we use the formalism developed
by Zhang et al [40, 41], where the electrical and spin currents
are driven by the electrical field, the charge accumulation and
the spin accumulation. Using this model, we assume that
the s–d exchange coupling of SS is not too strong so that
spin precession can be taken into account in the transport
description [4].

The spin density (or spin accumulation in diffusive
systems) exerts a torque on the local magnetization

T = Jsd

h̄MμB
M × m = Jsd

h̄μB

⎛
⎝

−m y cos θ(x)

mx cos θ(x) − mz sin θ(x)

m y sin θ(x)

⎞
⎠

(3)
where γ is the gyromagnetic ratio, μB is the Bohr magneton
and Jsd is the s–d exchange coupling. We can distinguish
two components in the spin torque: one lies in the (x, z)
plane and corresponds to the usual Slonczewski term [1]
(in-plane torque—proportional to m y), while the second one
is perpendicular to the (x, z) plane and corresponds to the
effective field term (out-of-plane torque, proportional to both
mx and mz).

2.2. Ballistic description

In the ballistic model of the F/SS interface, the Hamiltonian of
the system is:

H = p2

2m
− U − Jsd(

−→σ · M) (4)

where U is the potential profile, −→σ is the vector of Pauli
matrices and M is the local magnetization. The wavefunctions
are the eigenstates of the linear system:

H =
(

−h̄2

2m � − E 0

0 −h̄2

2m � − E

)
−Jsd

(
cos θ sin θ

sin θ − cos θ

)

(5)
where θ is non-zero only in the SS where θ = θ0 + Qx . In the
following, an electron state is determined by the Hartree–Fock
spin-dependent wavefunction (�↑, �↓), where ↑ (↓) refers to
majority (minority) electron spin projection. Note that majority
(minority) refers to the local magnetization of F.

Because the Hamiltonian depends on x through θ , there
are two ways to solve this eigenvalue problem: one is to
consider that Q is small enough so that the spatial variation
of H can be neglected (adiabatic assumption) or, on the
contrary, one has to properly consider this variation using a
comprehensive method (non-adiabatic assumption).

2.2.1. Adiabatic assumption. We firstly build an adiabatic
model in which the spin of the electron is assumed to follow
the local magnetization. We consider that θ ≈ θ0 and solve the
Schrödinger equation in such a simple system. To model the
F/SS bilayer, we then take into account the spatial variation in
the expression of the wavefunctions themselves setting θ =
θ0 + Qx . This way, the diffraction is ignored and at each
point (x, y, z) of the structure, currents and torques are defined
by the value of the angle θ at this point. We will use this
oversimplified model as a reference in order to illustrate the
role of spin diffraction.

2.2.2. Non-adiabatic model. The previous model is not
correct when the inhomogeneities (given by the wavelength
of SS, 2π/Q) are very steep (Q/2π is larger than kF).
In this case, we cannot neglect the spatial variation of θ

and the Hamiltonian must be solved in the local coordinate
system [42]. The linear system (H,�) is then transformed,
by rotation, into a new linear system (H̃ , �̃), in which �̃

are plane waves. After obtaining the wavefunctions �̃ in the
local system of coordinates of SS, we go back to the initial
system of coordinates of F to get � . Note that in this case,
the wavevectors for majority and minority spins depend upon
the spin spiral wavelength 2π/Q [39]. Finally, the boundary
conditions at the interface z = 0 lead to a linear system
that can be solved using Fourier transformation, in order to
change the x-dependence into a κ-dependence (κ is the in-
plane component of the wavevector). We do not further enter
into the details of the calculation (see [39]); the spin-dependent
electrical current densities Je and spin density m are calculated
using the usual definition [4]:

mx + im y = 2
Jsd

μB

a3
0

(2π)2

∫
G−+

↑↓ (r, r, ε) (6)

3
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mz = Jsd

μB

a3
0

(2π)2

∫ [
G−+

↑↑ (r, r, ε) − G−+
↓↓ (r, r, ε)

]
(7)

J↑(↓) = h̄e

4πme

∫
[∇r − ∇r′ ]G−+

↑↑(↓↓)(r, r′, ε)|r=r′ (8)

J = J↑ + J↓. (9)

2.3. Diffusive description

Following the formalism developed by Zhang et al [40, 41], in
a diffusive system, where spin diffusion is not negligible, the
electric current is:

j z
e = 2C0 Ez − 2D0

∂n0

∂z
− 2D

∂m
∂z

(10)

j x
e = −2D0

∂n0

∂x
− 2D

∂m
∂x

(11)

where m and n0 are spin and charge accumulation respectively,
while C0 and D0 denote the conductivity and diffusion
constant, respectively; they are related by the Einstein relation
C0 = e2g(EF)D0, where g(EF) is the density of states at the
Fermi level. The spin polarization parameters are defined by
the relations C = βMC0 and D = β ′MC0. Equivalently, the
spin current is given by:

jz
m = 2CEz − 2D

∂n0

∂z
− 2D0

∂m
∂z

(12)

jx
m = −2D

∂n0

∂x
− 2D0

∂m
∂x

. (13)

The equation of motion of the spin accumulation may be
written:

∂m
∂ t

+ ∇ · jm + Jsd

h̄
[m × M] = − m

τsf
(14)

where the last term on the left hand side represents the
precessional motion of the spin accumulation due to the s–
d interaction. Note that equation (14) is valid for weakly
ferromagnetic alloys with a strong spin-diffusion length, as
discussed in [4]. The current-induced spin accumulation can
be divided into two terms:

m(x, z) = αmM + δm (15)

where the first term on the right hand side is adiabatic and
proportional to the local magnetization M while the other one
describes the deviation from the adiabatic process. If we
take into account that the adiabatic part does not give any
contribution to the out-of-equilibrium spin current, we rewrite
the equation of motion:

∂δm
∂ t

+ ∇ · jm + Jsd

h̄
[δm × M] = −δm

τsf
. (16)

Equivalently, the continuity equation for the charge accumula-
tion and spin current reads:

∂n0

∂ t
+ ∇ · je = 0. (17)

It is instructive to define λsf = √
2D0τsf and λJ =√

2D0h̄/Jsd, where τsf is the spin-flip relaxation time, and
Jsd is the exchange between the itinerant electrons and the
magnetic background. Similarly to the ballistic model, we
perform a rotation of the coordinate system which has the
following matrix form:⎛
⎜⎜⎝

n0

mx

m y

mz

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 0 0 0
0 cos φ cos θ − sin φ cos φ sin θ

0 sin φ cos θ cos φ sin φ sin θ

0 − sin φ 0 cos θ

⎞
⎟⎟⎠

·

⎛
⎜⎜⎜⎝

n0′
m ′

x

m ′
y

m ′
z

⎞
⎟⎟⎟⎠ (18)

where θ = θ0 + Qx and φ = π/2. After this transformation,
we obtain a system of differential equations with constant
coefficients for n0′ and m′ = (m ′

x , m ′
y, m ′

z). The basic matrix
equation for the SS layer in steady state is then:⎛
⎜⎜⎜⎜⎜⎝

−� iβ ′ M0
d Q ∂

∂x 0 −β ′ M0
d �

−iβ ′ M0
d Q ∂

∂x −� + Q2 + 1
λ2

sd

M0
d

λ2
J

−2Q ∂
∂x

0 − M0
d

λ2
J

� + 1
λ2

sd
0

−β ′M0
d � 2Q ∂

∂x 0 −� + Q2 + 1
λ2

sd

⎞
⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎝

n0′(x, z)

m ′
x (x, z)

m ′
y(x, z)

m ′
z(x, z)

⎞
⎟⎟⎠ = 0 (19)

where � is Laplacian. The equation for the F layer is simpler
because it does not contain any terms proportional to Q.
Starting with the analytical solution in each of the two layers
in the form:

f (x, z) =
∑
n,i

Cn,i e
−qi,n ze−ikn x (20)

where kn = nQ (n = 0, 1, . . .) and qi,n are the roots of
the secular equation corresponding to equation (19), we write
down the boundary conditions between the layers. Similarly to
the previous section, the continuity of both spin accumulation
and currents at the interface gives recurrent formulae to
determine the coefficients Cn,i .

3. Results and discussion

The diffusive transport equation proposed above is valid as
long as λsf 
 2π/(k↑

F − k↓
F ) (see the discussion in [4]) and

applies to weakly ferromagnetic alloy with strong scattering
and low Curie temperature (such as NiFeCu alloys, for
example). We then take λJ ≈ 1 nm [43] and λsf = 15 nm
in the diffusive model. In this model, the shortest spin spiral
wavelength under consideration is 2π/Q = 6.3 nm.

For the ballistic model, the Fermi wavevectors for majority
and minority spins are respectively set to k↑

F = 1.1 Å
−1

,

k↓
F = 0.6 Å

−1
; the shortest wavelength for the spin spiral is

2π/Q ≈ 0.6 nm in the ballistic model, which corresponds to a

4
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Figure 2. Intensity of the perpendicular current density J z
e as a

function of (a) z at x Q/2π = 0, 0.6, 1 and (b) x at z = 0 nm.
2π/Q = 0.6 nm.

highly inhomogeneous magnetic system. In this configuration,
the spin spiral structure is close to that of an antiferromagnet.
For simplicity, the Fermi wavevectors of SS and F are assumed
to be the same.

Finally, we consider the linear approximation for the
ballistic model: for a small enough bias voltage, only the
electrons originating from the left reservoir with an energy
located between μl and μr significantly contribute to the
transport (current densities and torques). This approximation
is justified for both the electrical currents and in-plane torque.
However, electrons under the Fermi level are known to
contribute to the non-equilibrium out-of-plane torque. We
numerically verified that this contribution is small and does
not alter the general behavior of this component (especially the
interference scheme). Furthermore, this approximation allows
a better comparison between the ballistic and diffusive models
(in the latter, only Fermi electrons are taken into account). We
set μl −μr = 0.038 μeV so that the amplitude of the electrical
current is comparable in both ballistic and diffusive models.

3.1. Adiabatic model

Usually, in micromagnetic simulations and in weakly
inhomogeneous ferromagnetic systems, it is convenient to
assume that the spin transport (currents and torques) is defined
through the adiabatic model presented in section 2.2.1. We
will show, however, that in the case of high inhomogeneities,
this assumption is not valid. Figures 2 and 3 display the
perpendicular and longitudinal electrical currents J x

e and J z
e

as a function of z and x in the adiabatic model (no spin
diffraction). The perpendicular current J z

e is unchanged in
the z-direction (figure 2(a)) and oscillates in the x-direction
(figure 2(b)), in agreement with the giant magnetoresistance
(GMR) effect: because no non-locality has been introduced in
the adiabatic model, the intensity of J z

e only depends on the
local angle between the magnetizations of the two layers.

Because ∂ J z
e /∂z = 0, one expects that ∂ J x

e /∂x =
0 in the stationary state (∂ρ/∂ t = 0). However, the
longitudinal current J x

e also oscillates following x (figure 3(b))
and decreases following z (figure 3(a)) (the intensities of
J z

e and J x
e do not depend on Q). As a consequence, the

divergency of the current density ∇ · Je is non-zero in the
adiabatic model, as long as 2π/Q is close to 0.6 nm (J z

e is
constant along z, whereas J x

e oscillates as a function of x).
This indicates that the adiabatic assumption is not valid for

Figure 3. Intensity of the longitudinal current density J x
e as a

function of (a) z at x Q/2π = −0.5, 0, 0.5 and (b) x at z = 0, 0.2
and 0.4 nm. 2π/Q = 0.6 nm.

strong magnetic inhomogeneities. However, for very smooth
magnetization variation (2π/Q � 1 nm), ∂ J x

e /∂x becomes
very small and the divergency ∇ · Je goes to zero. In this
extreme case, the adiabatic assumption is justified. However,
for high inhomogeneities, one needs to consider the more
comprehensive model proposed in sections 2.2.2 and 2.3.

3.2. Spin diffraction at F/SS interface

To understand the physics of the propagating waves in such a
bilayer in a non-adiabatic regime, let us consider a plane wave
originating from the left reservoir and initially in a majority
spin state. After interaction (reflection transmission) with the
interface, the electron is no longer in a pure spin state and
can be described as the superposition of majority and minority
spins (respectively described by �↑ and �↓—see [39] for
example). Furthermore, because of the spatial variation of the
magnetization of SS, we saw that the probability for an electron
with an incident wavevector κ to propagate with a wavevector
κ + nQ (κ + Q(n − 1/2)) after reflection (transmission) by
the interface is non-zero. This is illustrated by figure 4, where
an incident wave initially in a pure spin state with incident
wavevector κ diffracts forward and backward and changes to
a mixed spin state.

The interferences between the diffracted waves may
significantly affect the currents and torques, creating a strong
non-locality in the system. As a matter of fact, in such
inhomogeneous magnetic systems, spin torques and currents
arise from the contribution of frontward and backward
electrons diffracted from all over the structure.

3.3. Currents and torques in non-adiabatic regime

3.3.1. Current densities. We first analyze the influence of
the diffraction on the spin-dependent electrical currents in this
system. Figure 5 presents the intensity of the perpendicular
current density J z

e in the SS layer as a function of z (a) and x
(b), in the ballistic model.

One can observe a drastic difference between figures 2
and 3. Within 0.5 nm near the interface, J z

e oscillates
with the SS magnetization, resembling figure 2(b), and the
current is distributed along the interface, forming ‘hot spots’
(i.e. regions of high current density) corresponding to the
parallel orientation of the local magnetizations of F and
SS layers (figure 5(b)). But further from the interface,

5
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Figure 4. Schematics of the spin-dependent diffraction of a
spin-polarized plane wave at the interface F/SS. The initially
majority spin-polarized electron impinges with a wavevector κ on the
interface and produces several reflected and transmitted waves with
wavevectors κ ± Qn and κ + Q(n ± 1/2), respectively
(n is an integer).

Figure 5. Intensity of the longitudinal current density J x
e as a

function of (a) z at x Q/2π = −1, 0, 1 and (b) x at z = 0, 0.4 and
0.9 nm. 2π/Q = 0.6 nm.

the amplitude of the oscillations in J z
e decreases and the

current reaches a uniform value (figure 5(a)): the interferences
between the diffracted waves become stronger (increasing with
z) so that the spatial current modulation induced by the GMR
effect is reduced, leading to an averaging of J z

e .
This feature is independent of the model. Figure 6

displays the longitudinal and transverse electrical currents as a
function of z in ballistic and diffusive regimes. In the ballistic
regime, J z

e (figure 6(a)) possesses several periods T n,m
1 =

1/(k3(κ+Q(n− 1
2 )) − k4(κ+Q(m− 1

2 ))), T n,m
2 = 1/(k3(κ+Q(n− 1

2 )) −
k3(κ+Q(m− 1

2 ))) and T n,m
3 = 1/(k4(κ+Q(n− 1

2 )) − k4(κ+Q(m− 1
2 ))),

depending on Q. The z-dependence of J z
e in the diffusive

model (figure 6(b)) is comparable to that in the ballistic
model except that the oscillations do not exist. Note that
the decay length is inversely proportional to Q: this means
that the averaging effect due to interferences of spin-diffracted
waves is stronger in a highly inhomogeneous system (large Q)
than in a weakly inhomogeneous one (small Q). Then, the
decrease in the longitudinal current and the damping of the
current modulation due to the GMR effect occur on a longer
characteristic length when Q is small.

Figure 6. Intensity of the electrical current density as a function of z:
J z

e and J x
e in ballistic ((a), (c)) and diffusive ((b), (d)) models.

The same structure is found for J x
e (figures 6(c) and (d)),

which is damped far from the interface: due to the spin
diffraction, local spin and electrical currents arise along the
F/SS interface. The maximum intensity of J x

e may be increased
by reducing Q (see the red solid lines): the averaging is strong
enough to create a local transverse electrical current but not
enough to damp it near the interface. Consequently, one may
expect that local transverse current can be maintained over a
rather long length in such systems, depending on Q. These
currents are only local and eventually averaged out far from
the interface (2–3 nm).

The angular dependence (or equivalently the x-dependence)
is also strongly affected by SS wavelength. Figure 7 shows the
longitudinal and transverse currents in ballistic and diffusive
models, as a function of x . When x Q = 2nπ(nπ) (n is
an integer), the local magnetizations of F and SS are parallel
(antiparallel), so that the longitudinal current is maximum
(minimum) and the transverse current is zero. In highly
inhomogeneous systems (2π/Q = 0.6 nm, black lines), when
x = π/2+nπ , the transverse current is maximum and both J z

e
and J x

e show a sine or cosine dependence on x .
However, when smoothing the inhomogeneities in SS, the

angular dependence is reduced and diverges from the cosine
or sine dependence. In particular, the current variation close
to x = nπ (local antiparallel alignment) is sharpened. As
a matter of fact, the contribution of electrons diffracted from
regions where the magnetizations are parallel (or close to
parallel) are reduced with increasing SS wavelength.

3.3.2. Torques. After the analysis of the current densities in
the F/SS bilayer, one would expect the same kind of behavior
for the in-plane and out-of-plane spin torques, namely an
important spin torque close to the interface, which decreases
far from the interface. Figure 8 displays the two components
of spin torque calculated with ballistic and diffusive models, as
a function of z. Similarly to the current densities, the in-plane
and out-of-plane torques decrease rapidly to zero far from the
interface. This decay is attributed to spin-diffraction-induced

6



J. Phys.: Condens. Matter 20 (2008) 505213 A Manchon et al

Figure 7. Intensity of the electrical current density as a function of x:
J z

e and J x
e in ballistic ((a), (c)) and diffusive ((b), (d)) models.

Figure 8. Intensity of spin transfer torques as a function of z:
in-plane and out-of-plane components in ballistic ((a), (c)) and
diffusive ((b), (d)) models.

averaging, as explained above (note that in the diffusive regime
this decay follows an exponential oscillating function—see
equation (20)).

However, the role of Q is not the same as for the
current densities. Firstly, the decay length of the spin torque
components does not depend on Q, contrary to the longitudinal
and transverse currents. Secondly, the amplitudes of in-plane
and out-of-plane components of spin torque are affected by Q
in different ways.

Figure 9 displays the x-dependence of the in-plane and
out-of-plane components of spin torque. The shape of the
oscillation of both components becomes more asymmetric in
the adiabatic regime. This asymmetry is even more important
in the diffusive model; it indicates an increasing role of the
longitudinal spin accumulation in the torques. As a matter of
fact, in metallic spin valves, longitudinal spin accumulation is
well known to affect the angular dependence of spin transfer
torque, and makes it differ from a simple sine dependence [4].

Figure 9. Intensity of spin transfer torques as a function of x:
in-plane and out-of-plane components in ballistic ((a), (c)) and
diffusive ((b), (d)) models.

When spin diffraction takes place, it reduces the influence
of spin accumulation by averaging it out so that the angular
dependence is found close to sine.

Furthermore, whereas the in-plane component decreases
when increasing Q, the out-of-plane component is less
dependent on Q. This interesting difference does not depend
on the model (ballistic or diffusive). This characteristic may be
explained as follows. Electron motion has a twofold character:
non-adiabatic when it crosses the interface and adiabatic for
its motion along the interface. It is known that the in-plane
torque exists even for completely adiabatic motion but the
out-of-plane torque appears only in the case of non-adiabatic
motion. So there are two contributions into the in-plane torque
(adiabatic and non-adiabatic) and only one (non-adiabatic) into
the out-of-plane torque.

4. Discussion

In this section, we comment on a number of issues related to
the experimental realization and observation of the phenomena
described above.

The model presented in this article does not take into
account the exchange interaction between the ferromagnet and
the spin spiral. Indeed, such an interaction should locally
modify the magnetic configuration across the interface, then
reducing the effects predicted in this paper. However, usual
systems would use a non-magnetic layer with large spin-
diffusion length such as Cu or Ag to decouple the two magnetic
layers without affecting the spin configuration of the itinerant
electrons, which is close to the system described in this paper.

It was shown that currents and torques are modulated
along the interface and that this modulation exists within some
distance from the interface. This modulation may first lead
to a specific dynamical behavior of the spin spiral structure:
while the in-plane torque tends to align the spin spiral on
the magnetization of the ferromagnet, the out-of-plane torque
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tends to orient the spin spiral out of the plane, then distorting
the spin structure.

Furthermore, the current’s and torque’s modulations may
lead to another interesting effect: if one uses a thin SS layer as a
spacer between two ferromagnetic layers, the current-induced
modulated spin torque may locally nucleate magnetization
switching in the free layer. These ‘hot spots’ due to the SS layer
should provide an efficient way to switch the magnetization of
a ferromagnet at lower current density than in the case of a
paramagnetic spacer.

Finally, our prediction that even smooth variation of
magnetization leads to the existence of not only in-plane
(adiabatic) but also out-of-plane (non-adiabatic) torque opens
the possibility of an efficient mechanism for driving a domain
wall by a current. Let us consider a sandwich consisting of a
ferromagnet with a domain wall separated from a uniformly
magnetized ferromagnetic layer by a paramagnetic spacer.
Instead of injecting the current in the plane of the domain wall
layer, we inject the current perpendicularly to the interfaces.
This should lead to spin diffraction at the interface with the
domain wall, as described in this paper, and to the combination
between sizable in-plane and out-of-plane torques. As a
consequence, the resulting distortion of the domain wall should
lead to low critical current domain wall motion.

5. Conclusion

Ballistic and diffusive models of spin-dependent transport in a
F/SS bilayer are proposed. We showed that due to the spatially
varying local magnetization of the spin spiral, spin-dependent
interferences occur leading to spin diffraction. This new type
of diffraction is at the origin of the non-locality of the transport
properties in the system and gives rise to complex physics
inside the SS layer.

It was shown that currents and torques are modulated
along the interface and that this modulation exists within some
distance from the interface. Furthermore, in such systems, the
amplitudes of in-plane and out-of-plane torque are expected to
be of the same order, contrary to what is currently observed in
metallic spin valves.

Finally, a number of experimental realizations are
proposed in order to take advantage of both torque modulation
and the amplitude of out-of-plane torque.
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